Multi-Behavior Recommendation with Cascading Graph Convolution Networks

Zhiyong Cheng¹, Sai Han¹, Fan Liu², Lei Zhu^{3,5}, Zan Gao¹, Yuxin Peng^{4,5}

¹Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences),, China

² School of Computing, National University of Singapore,, Singapore


³School of Information Science and Engineering, Shandong Normal University,, China

⁴Wangxuan Institute of Computer Technology, Peking University,, China

⁵Peng Cheng Laboratory,, China

[jason.zy.cheng,liufancs]@gmail.com,hansai11@126.com

code: https://github.com/SS-00-SS/MBCGCN.

WWW 2023

Introduction

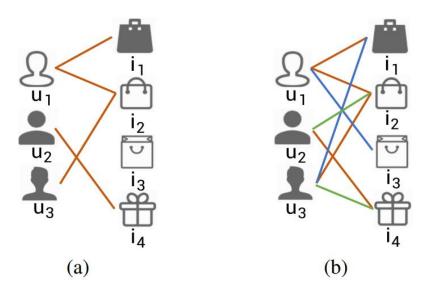


Figure 1: Examples of single-behavior and multi-behavior in e-commerce scene. (a) is *single-behavior* and (b) is *multi-behavior*. The **red** line indicates *purchase* behavior, the **blue** line indicates *click* behavior, and the **green** line indicates *add to cart* behavior.

Method

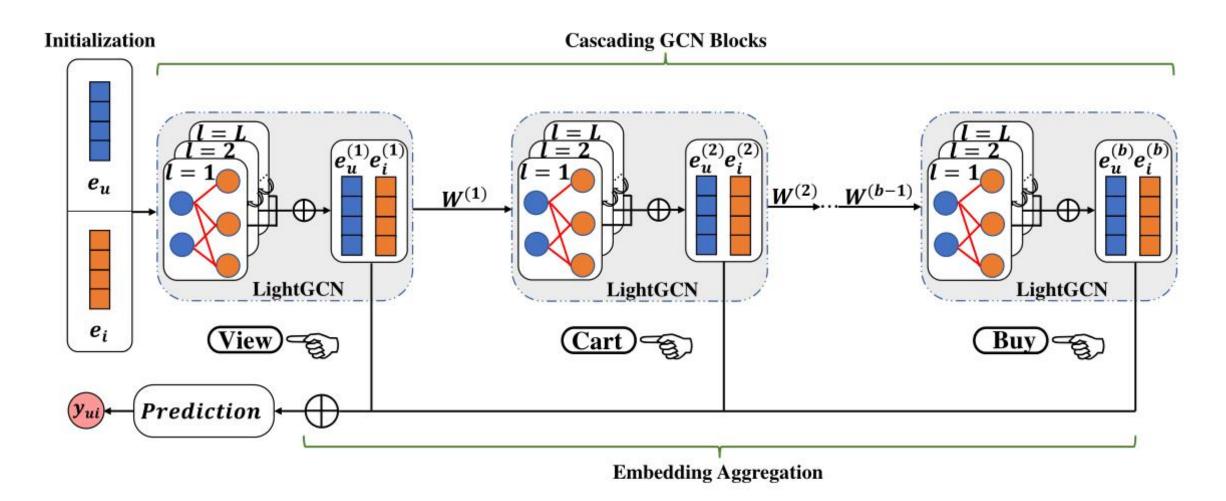


Figure 1: Overview of our MB-CGCN model.

Method

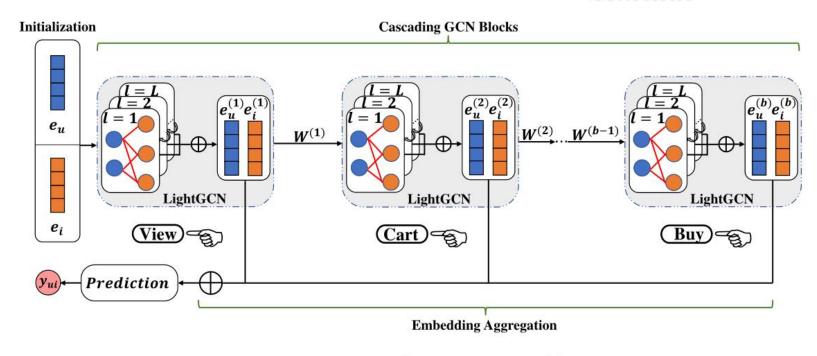


Figure 1: Overview of our MB-CGCN model.

$$y_{u,i}^b = \begin{cases} 1, & \text{If } u \text{ has interacted with } i \text{ under behavior } b; \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

$$\boldsymbol{e}_{u_m}^0 = \boldsymbol{P} \cdot \boldsymbol{I} \boldsymbol{D}_m^U, \quad \boldsymbol{e}_{i_n}^0 = \boldsymbol{Q} \cdot \boldsymbol{I} \boldsymbol{D}_n^I$$
(2)

$$e_u^{(b,l+1)} = \sum_{i \in \mathcal{N}_u} \frac{1}{\sqrt{|\mathcal{N}_u|}\sqrt{|\mathcal{N}_i|}} e_i^{(b,l)}$$
(3)

$$e_{i}^{(b,l+1)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}|}\sqrt{|\mathcal{N}_{u}|}} e_{u}^{(b,l)}$$
(4)

$$e_{u}^{(b)} = \sum_{l=0}^{L} e_{u}^{(b,l)}, \quad e_{i}^{(b)} = \sum_{l=0}^{L} e_{i}^{(b,l)}.$$
 (5)

Method

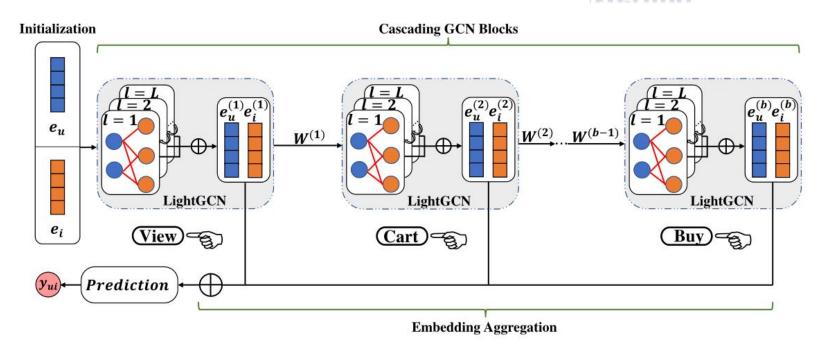


Figure 1: Overview of our MB-CGCN model.

$$e_u^{(b+1,0)} = W_u^b e_u^{(b)}, \quad e_i^{(b+1,0)} = W_i^b e_i^{(b)}$$
 (6)

$$\hat{y}_{ui} = \boldsymbol{e}_u^T \boldsymbol{e}_i \tag{8}$$

$$e_{u} = \sum_{b=1}^{B} e_{u}^{(b)}, \quad e_{i} = \sum_{b=1}^{B} e_{i}^{(b)}$$

$$\mathcal{L} = \sum_{(u,i,j) \in O} -\ln\sigma(y_{ui} - y_{uj}) + \lambda \|\Theta\|^{2}$$
(9)

Table 1: Statistics of the datasets used in our experiments.

Dataset	User#	Item#	Buy#	Cart#	View#
Beibei	21,716	7,997	304,576	642,622	2,412,586
Tmall	15,449	11,953	104,329	195,476	873,954

Table 2: Overall performance comparison. Improv. denotes the relative improvements over the best baseline.

Dataset Metric	Single behavior Methods		Multi behavior Methods				Improv.				
	Wethe	MF-BPR	NeuMF	LightGCN	RGCN	GNMR	NMTR	MBGCN	CRGCN	MB-CGCN	Improv.
	Recall@10	0.0191	0.0232	0.0391	0.0363	0.0413	0.0429	0.0470	0.0459	0.0579	23.2%
Beibei	NDCG@10	0.0049	0.0135	0.0209	0.0188	0.0221	0.0198	0.0259	$\underline{0.0324}$	0.0381	17.6%
	Recall@20	0.0531	0.0736	0.0717	0.0684	0.0729	0.0776	0.0792	0.0891	0.0972	9.1%
	NDCG@20	0.0239	0.0290	0.0270	0.0274	0.0279	0.0296	0.0330	0.0348	0.0404	16.1%
	Recall@50	0.1014	0.1402	0.1347	0.1309	0.1391	0.1453	0.1493	0.1694	0.1924	13.6%
	NDCG@50	0.0330	0.0405	0.0366	0.0371	0.0374	0.0399	0.0447	0.0487	0.0572	17.5%
	Recall@10	0.0076	0.0236	0.0411	0.0215	0.0368	0.0282	0.0509	0.0855	0.1233	44.2%
Tmall	NDCG@10	0.0036	0.0128	0.0240	0.0104	0.0216	0.0137	0.0294	0.0439	0.0677	54.2%
	Recall@20	0.0244	0.0311	0.0546	0.0326	0.0608	0.0642	0.0691	0.1369	0.2007	46.6%
	NDCG@20	0.0155	0.0152	0.0266	0.0125	0.0263	0.0303	0.0350	0.0676	0.0880	30.2%
	Recall@50	0.0393	0.0494	0.0874	0.0411	0.0971	0.1034	0.1117	0.2325	0.3322	42.9%
	NDCG@50	0.0197	0.0193	0.0338	0.0160	0.0336	0.0383	0.0455	0.0866	0.1134	30.9%

Table 3: Effects of the feature transformation in MB-CGCN. The reported performance is computed based on the top 20 results.(w/o. ft and w. ft denote MB-CGCN with and without the feature transformation, respectively.

Method	Bei	ibei	Tmall		
	Recall	NDCG	Recall	NDCG	
w/o. ft	0.0892	0.0382	0.1994	0.0825	
w. ft	0.0972	0.0404	0.2007	0.0880	

Table 4: Effects of feature aggregation in MB-CGCN. The reported performance is computed based on the top 20 results.

Method	Bei	ibei	Tmall		
Method	Recall NDCG		Recall NDCG		
w/o. agg.	0.0556	0.0140	0.0698	0.0291	
w. concat.	0.0758	0.0282	0.1648	0.0688	
w. agg.	0.0972	0.0404	0.2007	0.0880	

Table 5: Effects of behavior number in MB-CGCN. The reported performance is computed based on the top 20 results.

Method	Bei	bei	Tmall		
Method	Recall	NDCG	Recall	NDCG	
buy	0.0717	0.0270	0.0546	0.0266	
cart>buy	0.0930	0.0389	0.1956	0.0851	
view>cart>buy	0.0972	0.0404	0.2007	0.0880	

Table 6: Effects of layer numbers by setting the same layer numbers to all behaviors.

Method	Bei	ibei	Tmall		
	Recall	NDCG	Recall	NDCG	
1-Layer	0.0942	0.0328	0.1923	0.0864	
2-Layer	0.0954	0.0359	0.1933	0.0867	
3-Layer	0.0961	0.0370	0.1967	0.0869	

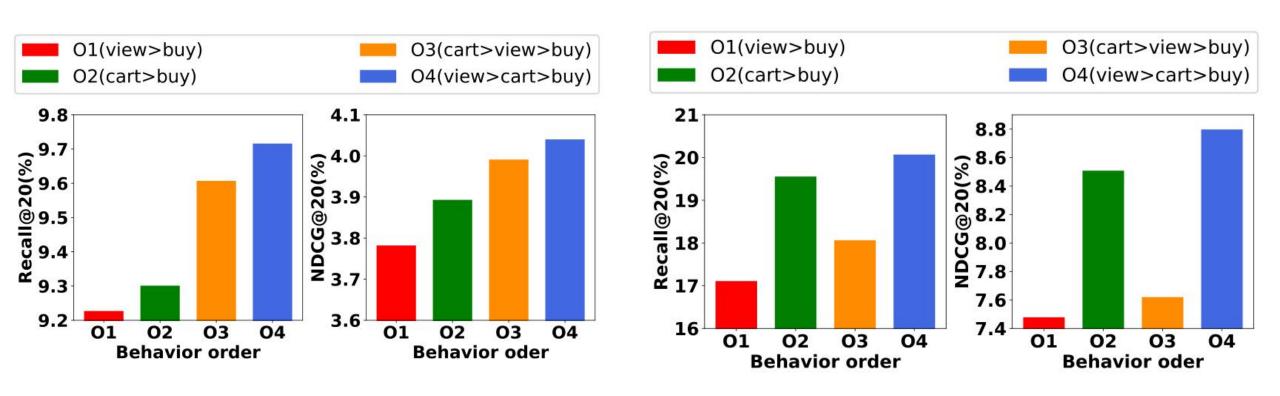


Figure 2: Effects of behavior order on Beibei.

Figure 3: Effects of behavior order on Tmall.

Thanks